Quality Questions Need Quality Code:
Classifying Code Fragments on Stack Overflow

Maarten Duijn,* Adam Kudera,! Alberto Bacchellit
*M.J.Duijn @student.tudelft.nl, Tkucerad5 @fit.cvut.cz, ta.bacchelli@tudelft.nl
“IDelft University of Technology, The Netherlands, fCzech Technical University in Prague, Czech Republic

Abstract—Stack Overflow (SO) is a question and answers
(Q&A) web platform on software development that is gaining
in popularity. With increasing popularity often comes a very
unwelcome side effect: A decrease in the average quality of a post.
To keep Q&A websites like SO useful it is vital that this side
effect is countered. Previous research proved to be reasonably
successful in using properties of questions to help identify low
quality questions to be later reviewed and improved.

We present an approach to improve the classification of high
and low quality questions based on a novel source of information:
the analysis of the code fragments in SO questions. We show that
we get similar performance to classification based on a wider set
of metrics thus potentially reaching a better overall classification.

I. INTRODUCTION

With over 7 million questions answered and 2 million users,
Stack Overflow is the largest Q&A website on software devel-
opment. Like many other Q&A websites the SO community
is governed by a reputation system. Users are allowed to vote
on questions and answers, providing insight into its perceived
quality. This measure of quality is then reflected into the
user’s reputation. By storing this information, in addition to
the question, its answers, and comments, Q&A websites have
become a platform that allow experts to share knowledge,
and help developers by providing solutions and insight into
programming problems.

This knowledge gathering process starts with a developer
asking a question. As with any user generated content, the
quality of this question is however debatable. SO has a clear
guideline on what a good question is, what it contains, and
how it should be tagged [1]. The potential benefits of writing
quality questions are notable for all parties involved. A well
defined question is known to lower response times and thus
increase user satisfaction [2]. The platform itself benefits from
having better content and thus attracting more users. Creating
a tool that detects low quality questions at the instant they
are posted could therefore bring value to Q&A systems. The
tool could point out some of the flaws to users, and inform
moderators so that the question is quickly improved.

Previous research on SO questions (focusing mainly on
the metrics of the question itself, the users involved, and the
external references mentioned) has provided some insight into
what constructs indicate quality [3], [4]. In this paper, we aim
to provide additional insight into the quality of a question by
investigating the code fragments in a question. SO guidelines
tell us that the best questions contain a bit of code but not

entire software programs, ideally just enough code for others
to reproduce the problem [1]. Existing research has shown that
there is a certain optimal code-to-text ratio [5], but more in
depth research into code fragments on Q&A sites is lacking.

As required by this year’s MSR Challenge we combine
two information sources: We consider the code-to-text ratio
(which also considers the natural language part), then we focus
on code only information by adding existing metrics of code
readability [6] and using a set of metrics of our own making.
These metrics were created by manually investigating over 200
code fragments in low rated Java questions on SO. During this
qualitative study we found 30 constructs indicative for a low
quality code fragment. Together with the code-to-text ratio and
readability metrics, metrics for these constructs were used in
a classifying algorithm. This algorithm classifies questions as
either ‘good’ or ‘bad’” with an accuracy of approximately 80%.

II. RELATED WORK

The quality of questions has already been investigated from
different perspectives. Yang et al. [7] found that the number of
edits on a question is a very good indicator of question quality.
Ponzanelli et al. [3] investigated questions’ classification as
‘very good’, ‘good’, ‘bad’, and ‘very bad’ using different SO-
specific, readability, and popularity metrics. They reported a
precision of ~80%. We leverage parts of their approach.

A number of studies investigated the relation between
question quality and the contained code fragments. Correa and
Sureka [4] investigated closed questions on SO, also finding
that the occurrence of code fragments is significant. Squire
& Funkhouser [5] studied the relation of such an occurrence
and the score of the questions and answers; they determined
an optimal ratio between text and code. Subramanian and
Holmes[8] investigated the code snippets in Java Android
questions and they tried to tie them to specific functions from
the Android SDK they reference. Allamanis and Suton[9] tried
to divide SO questions into different categories and also used
several code fragment related features. Buse and Weimer[6]
performed analysis on short and incomplete code snippets re-
garding their readability by humans. From human assessment
of readability they inferred several readability metrics, which
are independent of the length of the code snippet. Using these
metrics they evaluated the code readability. We use some of
these metrics in addition to our our own.

III. METHODOLOGY
A. Exploratory Findings

In the first step in our data analysis process we manu-
ally investigated a number of questions and analyzed their
code fragments. We hypothesized that more detail in a code
fragment should indicate a better question thus longer code
fragments should mean more answers and a quicker response
time. Our analysis however revealed that the opposite was true:
Questions with more code generally receive fewer answers.
This motivated us to take a closer look at the code fragments
and their contents and led us to form the premise for our
research.

B. Research Questions

Related work suggested that code-to-text ratio is a metric
often used for classification but that more in depth analysis
of code fragments is very rarely considered[S]. Our goal is
to improve the classification of SO questions using analysis
of code samples by providing an insight into what features in
such a fragment are indicators of question quality. This lead
us to the following research questions:

RQ1: Is the question quality influenced by different readabil-
ity and quality metrics of code snippets?

RQ2: What code snippet metrics are most relevant for deter-
mining quality of a question?

C. Dataset Acquisition

To answer our research questions we used the MSR Chal-
lenge SO data dump [10]. We imported the data into a
MySQL database for a pre-processing step, in which we
extracted the code fragments from the questions. If a question
contained more than one fragment, we concatenated them into
a single one. By filtering all the questions that did not contain
code fragments, or questions that were not about the Java
programming language we got a dataset containing 521,530
questions.

D. Qualitative Analysis

We determined code metrics indicative for question quality
by manually inspecting over 200 Java code fragments in SO
questions. During the inspection we noted the constructs that
we hypothesized were indicative for the question’s quality.

We focused our efforts on finding constructs indicating low
quality questions. We did this for the following reasons: (1)
Research into readability [6] of code reports that most metrics
that were used, such as the line length, and the number of
keywords, are negatively related to readability; (2) when rating
software quality, tools such as inFusion' act similarly, only
indicating likely problems; and (3) pinpointing a low quality
piece of code is, intuitively, easier than identifying high quality
code.

We only analyzed questions with a negative score and noted
the constructs we thought to be common and likely to be
indicative for question quality. As an example we thought

Uhttp://www.intooitus.com/products/infusion

the number of comparison operators (i.e., ‘=="in Java) to
be a good candidate for indicating low quality questions. The
reasoning behind this is that it is a common rookie mistake
to try and check object equality with this operator. Instead the
‘equals’ method should be used in Java.

Apart from noticing certain constructs, we observed that
most of the questions have a negative score because of general
shortcomings of the questions themselves. For example, users
often ask very easy questions, the questions are not descriptive
enough, or a question is not asked at all. Nonetheless, even in
questions where code was clearly not the sole cause for a low
rating, we still found interesting constructs while investigating
the embedded code fragments.

E. Metrics

The metrics used for classification questions are a combina-
tion of readability metrics [6], metrics based on the constructs
found during the qualitative analysis, and the number of errors
reported by a formatting style checker.?.

Each of the constructs found by the qualitative analysis has
one or two associated metrics. These metrics were calculated
by first counting the number of occurrences of the construct or
measuring the length of the construct. The number returned by
counting or measuring is then normalized by either dividing
this number by the number of lines in the fragment, or by
taking the maximum number of occurrences per line in the
fragment. For example, the metric for the ‘==" construct is
calculated by counting the number of its occurrences in a
fragment, and then normalized by dividing this number by
the number of lines in the fragment. The complete list of
metrics created by us is available at http://sback.it/codemetrics.
Because of limitations to the size of this paper we only report
the most significant here.

F. Question Quality Criteria

To verify the classification of questions one needs to know
how good they actually are. We used two approaches. First, SO
questions have a score which is close to a metric for quality.
The score of a question is a combination of its popularity and
its quality, thus we split the questions into two categories:
(1) Low quality, i.e., questions with a score < 0; and (2) high
quality, i.e., questions with a score > 0.

Questions with a score of zero are usually not popular
enough to get a reliable verdict, thus we excluded them
from the dataset. The edited questions pose another problem,
the score could potentially represent an older version of the
question and therefore they were excluded as well. With the
above constraints, our dataset contained 123,688 questions, out
of which 11,997 low quality and 111,671 high quality.

Yang et al. [7] reported the number of edits to be a valid
indicator for question quality. We based our second approach
on this finding, and divided the questions into two categories:
(1) Low quality, i.e., questions without edits; and (2) high
quality, i.e., questions with edits. This caused the dataset to be

Zhttp://checkstyle.sourceforge.net/

TABLE I
CLASSIFICATION ACCURACY BY ALGORITHMS AND QUALITY CRITERIA

Classification accuracy
ML algorithm Score quality criteria | Edit quality criteria
code/text all code/text all
metric metrics metric metrics
Decision tree 58.3% 60.4% 52.3% 55.0%
Logistic regression 58.0% 65.1% 52.3% 55.6%
Random forest 69.2% 79.8% 73.3% 81.2%

divided into 247,156 non-edited questions and 274,374 edited
questions.

G. Classification

Classifying the questions into the previously mentioned
categories was done in three steps. (1) We measured cor-
relations between individual metrics and our quality metrics.
(2) To classify questions based on the calculated metrics
we used three classification algorithms: decision tree, logistic
regression, and random forest. We used a balanced sample of
randomly selected questions to train and test the algorithms.
To evaluate the performance of the algorithms, we conducted
10-fold cross validation. (3) To determine the most important
metrics for the question quality, we used the feature impor-
tance of the random forests algorithm, metrics correlations,
and created decision tree analysis.

IV. RESULTS
A. Question Classification

To answer RQ1, we used the aforementioned quality criteria
and classification algorithms. Table I summarizes the results,
which show that the algorithms reach a reasonable accuracy.
Providing evidence that the quality of a post is influenced by
readability and quality of code snippets. All metrics combined
improve results of code-to-text ratio alone, thus showing the
relevance of adding this new source of information. The
improvement is especially evident on the best classifier, i.e.,
random forest.

B. Metrics Importance

To answer our second research question, we analyzed the
results more in-depth and focused on combined metrics. First
we evaluate the metrics with a Pearson’s correlation coeffi-
cient. Most of the metrics show a small negative correlation
with question quality, suggesting that the chosen code metrics
indicate bad code. The metrics with the most significant
correlation with score are summarized in figure 1. Most of the
metrics also have a small positive correlation with the number
of edits, which is shown in figure 2.

However, the correlation itself shows only the dependence
of quality on metrics and some of these metrics might not
be useful for classification algorithms. Therefore we also
extracted metric importance from the random forest algorithm
of which the most significant are summarized in figure 3.
Lastly the created decision tree was used to gain insight not

Code/text ratio[[
Main method length [
String concats (max) [
Printlines (max) [
Indentation (avg) [
Spaces (avg) [
Branches [
Indentation (max) [
Keywords (avg) [
String concats (avg) [
Loops! [
Blank lines in block (avg) [
Keywords (max) [

Lines (avg) [

Brackets per line (avg) [
Blank lines (avg) [
Parse calls (avg) [

Comparisons (avg) |
Methods [
Invalid keywords (avg) |
-0.12 —0.08 —0.04 0.00 0.04

Fig. 1. Pearson’s correlation between metrics and score

Lines (avg)

Code length

Blank lines in block (avg)
String concats (max)
Code/text ratio

Blank lines (avg)

Nested calls (max)

Most occuring char (max)
Keywords (max)

Spaces (avg)

Line length (max)

Main method length
Commas (max)
Branches

Getters

Setters

Printlines (max)

String concats (avg)
Loops

Numbers (avg)
—0.08

—0.04 0.00 0.04 0.08 0.12 0.16

Fig. 2. Pearson’s correlation between metrics and number of edits

Code/text ratio

Line length (avg)

Code length

Line length (max)
Spaces (avg)

Formatting errors (avg)
Periods (avg)

Blank lines (avg)
Keywords (avg)

Most occuring char (max)
Assignments (avg)

Lines (avg)

Numbers (avg)
Indentation (avg)
Arithmetic operators (avg)
Brackets per line (avg)
Comparisons (avg)
Vague words (avg)
Commas (avg)

Vague terms (max)
0.00 0.03 0.06 0.09

Fig. 3. Random forests metric importance

only into which values were most important but also their
thresholds.

V. DISCUSSION

The performance of the Random forest classification al-
gorithm is very good and this algorithm could be used for

detecting low quality questions at the moment they are posted.
It achieves similar performance as related work [3], which
focused on different types of question metrics, but did not
look into metrics of the code itself. Combining their metrics
with our metrics could increase the classification performance
further. The mentioned paper also leveraged state-of-the-art
learning genetic algorithm, which may also increase the per-
formance.

We found that most important code metrics related to
question quality are those most important for general code
readability, such as length of the lines, whitespace occurrence
or number of formatting errors. This suggests that presenting
“clean” code is important when asking questions on SO. The
Pearson correlations also show that certain constructs should
be avoided. Print line statements, for instance, have a relatively
high negative correlation with score, indicating that these
subtract value from the code fragment.

Our findings can be used in a number of ways to improve
question quality on SO. Firstly, the set of guidelines on SO
could be updated to avoid complexity and certain constructs as
much as possible. The second way our results can be used is
by using the constructed classifier to automatically rate code
fragments. When a question contains code that is not readable
enough, or that is too complex, SO could warn the poster and
the administrators. Posters can then use the feedback from the
algorithm to improve their questions.

There are some threats that endanger the validity of our
results. Due to reputation gaming on SO, score may not rep-
resent exact quality of a question. Moreover, many questions
have a score equal to zero, therefore their quality is unknown.
Since we focused only on code snippets, we are completely
dependent on the askers and their proper marking of those
snippets with the <code> tag. There are questions, with non-
code text, like stack traces, marked with this tag that were not
excluded; this could influence the effect of some metrics.

An important thing to note about classification with regard
to the edit quality criteria is that we were not able to uncover
the original code fragment. The metrics we extracted are based
on the latest, thus edited, version of the question.

We also performed our analysis purely on Java questions.
An analysis of questions concerning other programming lan-
guages might need a different set of metrics, which might have
different importance for the classification algorithms.

VI. CONCLUSION

Q&A websites, such as SO, are becoming more and more
popular. An unwelcome side effect that endangers this growth
is low quality questions. By asking a high quality question, a

user can expect a faster and better response, and the website
gains valuable information. Therefore websites like SO could
profit from having a tool that automatically detects low quality
posts at the time they are posted.

Several papers researched quality of the questions on SO,
however they have never tried to relate the quality of code
snippets included with a question to the quality of the question
itself. In this paper, we investigate code snippets in addition
to code-to-text ratio on SO and study metrics to evaluate their
influence on quality. We also examine which of these metrics
contribute the most to a question’s quality.

We defined the quality of a question in two ways: marking
questions with positive score as good and with negative as bad
and also those never edited as bad and edited as good. Using
three different machine learning algorithms (Decision Trees,
Logistic Regression and Random Forests) we classified the
questions into these categories, using the metrics previously
inferred and achieved a classification accuracy of 81.2%.

We also investigated the importance of observed metrics
using the Random forest algorithm and Pearson’s correlation
analysis. We found that code-to-text ratio as used in most
research is indeed the most important factor. However several
metrics, most of them related to code readability, also sig-
nificantly contribute to the quality of a question, underlining
the importance of studying code fragments as a source of
information.

REFERENCES

[1] How do i ask a good question? [Online]. Available:
http://stackoverflow.com/help/how-to-ask

[2] V. Bhat, A. Gokhale, R. Jadhav, J. Pudipeddi, and L. Akoglu, “Min(e)d
your tags: Analysis of question response time in stackoverflow,” in Proc.
of ASONAM 2014, 2014, pp. 328-335.

[3] L. Ponzanelli, A. Mocci, A. Bacchelli, and M. Lanza, “Understanding
and classifying the quality of technical forum questions,” in Proc. of
QSIC 2014, pp. 343-352.

[4] D. Correa and A. Sureka, “Fit or unfit: Analysis and prediction of "closed
questions’ on stack overflow,” in Proc. of COSN 2013, pp. 201-212.

[5] M. Squire and C. Funkhouser, “‘a bit of code’: How the stack overflow
community creates quality postings,” in Proc. of HICSS 2014, pp. 1425—
1434.

[6] R. Buse and W. Weimer, “Learning a metric for code readability,” IEEE
TSE, vol. 36, no. 4, pp. 546-558, 2010.

[7]1 J. Yang, C. Hauff, A. Bozzon, and G.-J. Houben, “Asking the right
question in collaborative Q&A systems,” Proc. of Hypertext 2014, pp.
179-189.

[8] S. Subramanian and R. Holmes, “Making sense of online code snippets,”
in Proc. of MSR 2013, pp. 85-88.

[9] M. Allamanis and C. Sutton, “Why, when, and what: Analyzing stack

overflow questions by topic, type, and code,” in Proc. of MSR 2013, pp.

53-56.

A. T. T. Ying, “Mining challenge 2015: Comparing and combining

different information sources on the stack overflow data set,” in Proc.

of MSR 2015, 2015, p. to appear.

[10]

